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aldehydes to produce the desired allylic alcohols.19 Presence of 
a donor ligand on nickel such as triphenylphosphine proved to 
accelerate the homo-coupling of alkenyl triflates.20 For example, 
addition of a catalytic amount of NiCl2(PPh3)2 (5 mol % of CrCl2) 
instead of NiCl 2 in the reaction of triflate 1 and benzaldehyde 
under the same condition described above provided 2,3-didecyl-
1,3-butadiene (7) in 37% yield along with the desired alcohol 2 
(35%). 

Acknowledgment. We are grateful to Professor Yoshito Kishi 
at Harvard University for valuable discussions. 

(19) Attempt to complete the Grignard-type reaction between triflate 1 
(1.0 equiv) and benzaldehyde (0.5 equiv) with NiCl2 (0.2) and zinc (2.0) in 
DMF at 25 °C for 6 h resulted in recovery of the starting materials. 

(20) (a) Kende, A. S.; Liebeskind, L. S.; Braitsch, D. M. Tetrahedron Lett. 
1975, 3375. (b) Zembayashi, M.; Tamao, K.; Yoshida, J.; Kumada, M. 
Tetrahedron Lett. 1977, 4089. 

(21) Bp 112 0C (bath temperature, 2 torr); IR (neat) 3434, 2926, 2854, 
1714, 1646, 1459, 1359, 1047, 718 cm'1; NMR (CDCl3) S 0.92 (t, 3, J = 7 
Hz), 1.15-1.75 (m, 18), 1.90-2.15 (m, 3), 2.13 (s, 3), 2.42 (t, 2, J = 7 Hz), 
4.06 (t, 1, J = 6 Hz), 4.84 (s, 1), 5.00 (s, 1). Anal. Calcd for Ci7H32O2: C, 
76.06; H, 12.02. Found: C, 75.97; H, 12.26. 
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Recent theoretical calculations1,2 coupled with synthetic3 and 
structural investigations, unambiguously show that the lone pair 
of electrons on the divalent tin in stannocene4,5 and stanna-
carborane derivatives6 is chemically inactive and the metal does 
not act as a donor atom. But the stannocinium cations7 and the 
stannacarboranes behave as Lewis acids when forming complexes 
with tetrahydrofuran and 2,2'-bipyridine.8,9 Although a similar 
study in the analogous germanocene,10,11 germacarboranes,6,12 and 
germaboranes13 began in early 1970, convenient synthetic methods 
and crystal structures of (r;5-C5H5)2Ge,14 (7i5-CH3C5H4)2Ge,15 
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nomet. Chem. 1985, 281, C8. 
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Figure 1. Side view of 1; atoms are represented as circles of arbitrary 
radii. The central Ge atom lies at a center of symmetry. The weaker 
Ge-C interactions are shown by thinner lines. 

Table I. Selected Bond Lengths (A) with Standard Deviations in 
Parentheses 

Ge-C(I) 
Ge-C(2) 
Ge-B(3) 
Ge-B(4) 
Ge-B(5) 
C(l)-C(2) 
C(l)-B(5) 
C(l)-B(6) 
C(I)-Si(I) 

2.38 (2) 
2.39 (2) 
2.14(3) 
2.08 (3) 
2.15(2) 
1.43 (3) 
1.61 (3) 
1.72 (2) 
1.89 (2) 

C(2)-Si(2) 
C(2)-B(3) 
C(2)-B(6) 
B(3)-B(4) 
B(3)-B(6) 
B(4)-B(5) 
B(4)-B(6) 
B(5)-B(6) 

1.88 (2) 
1.63 (4) 
1.72 (3) 
1.56 (4) 
1.73(4) 
1.56 (3) 
1.72(3) 
1.71 (3) 

(?/5-C5Me5)2Ge,16 and (??5-C5CH2Pri5)2Ge17 were reported only 
during the last few years. To date, a stannocene or a germanocene 
analogue in the stanna- or germacarboranes, in which the het-
eroatom is sandwiched by two carborane cages, has not been 
reported. We report herein the synthesis, characterization, and 
crystal structure of [2,3-(Me3Si)2C2B4H4]2GeIV (I) which may 
be the first example of a germanocene analogue. 

A 6.60-mmol sample of Li+I(Me3Si)2C2B4H5]" in tetrahydro­
furan (50 mL) was allowed to react with anhydrous GeCl4 (0.71 
g; 3.3 mmol), in a procedure identical with that employed in the 
synthesis of stannacarboranes,6 to produce ca. 0.338 g (collected 
at 0 0C; 0.67 mmol, 20% yield based on GeCl4 consumed; mp 107 
0C) of colorless [(Me3Si)2C2B4H4]2GeIV (I) as a pure sublimed 
crystalline product.18 In addition, neutral nido-carborane 
(Me3Si)2C2B4H6 (II)19 (0.69 g, 3.14 mmol) and c/cwo-germa-
carborane [(Me3Si)2C2B4H4]Ge" (III) (pale yellow liquid, 0.26 
g, 0.90 mmol, 27% yield based on GeCl4 consumed; bp 205 0C) 
were collected in traps held at -23 and -15 0C, respectively. 

The electron-impact (EI) mass spectrum of I (supplementary 
material, Table IV) exhibited a parent grouping [76Ge-
(12CH3),2

28Si4
12C4

11B8H,]+ with the major cutoff at m/z 512. 
The most significant features in both the infrared spectrum20 

and 1H pulse Fourier-transform NMR spectrum21 of I are the 

(14) Grenz, M.; Hahn, E.; du Mont, W.-W.; Pickardt, J. Angew. Chem. 
1984, 96, 69; Angew. Chem., Int. Ed. Engl. 1984, 23, 61. 

(15) Almlof, J.; Fernholt, L.; Faegri, K.; Haaland, A.; Schilling, B. E. R.; 
Seip, R.; Taugbol, K. Acta Chem. Scand., Ser. A 1984, A37, 131. 

(16) Fernholt, L.; Haaland, A.; Jutzi, P.; Kohl, F. X.; Seip, R„ Acta Chem. 
Scand. Ser. A 1984, A38, 211. 

(17) Schumann, H.; Janiak, C; Hahn, E.; Loebel, J.; Zuckerman, J. J. 
Angew. Chem. 1985, 97, 765; Angew. Chem., Int. Ed. Engl. 1985, 24. 773. 

(18) Compound I is soluble in THF, CHCl3, CDCl3, CH2CI2, and C6H14 
and is moderately stable in air for brief periods of time. 

(19) Hosmane, N. S.; Sirmokadam, N. N.; Mollenhauer, M. N. J. Orga­
nomet. Chem. 1985, 279, 359. 

(20) IR (CDCl3 vs. CDCl3): 2960 (m, s) and 2900 (w) [KC-H)], 2600 
(vs) [c(B-H)], 1410 (w, br) [.5(CH), asym], 1270 (sh), 1260 (vs) [5(CH), 
sym], 1190(m, br), 1130 (vw), 980 (m, br), 841 (ws.br) [p(CH)], 680 (w), 
630 (m, s) [KSi-C)], 520 (w, br), 450 (w), 380 (s, br), 325 (w) cm"1. 

0002-7863/86/1508-6050S01.50/0 © 1986 American Chemical Society 

ws.br


J. Am. Chem. Soc. 1986, 108, 6051-6053 6051 

absence of a stretching mode of vibration and a resonance near 
- 2 ppm, respectively, arising from B - H - B bridge bonds. 

The IR, N M R , and mass spectroscopic data for I are all 
consistent with its X-ray crystal structure2 2 that shows two dis­
torted pentagonal bipyramids joined by a germanium atom at the 
commo-apical position. A side view of the molecular structure 
of I is shown in Figure !. Table I, where selected bond lengths 
are presented, shows that the G e - C distances of 2.38 (2) and 2.39 
(2) A are substantially longer than the Ge-B distances [2.14 (3), 
2.08 (3), and 2.15 (2) A] as found previously in stanna-
carborane-bipyridine complexes.8,9 The ?;5-bonding (ca. 2.1-2.4 
A) of the germanium atom to each of the pentagonal faces of 
carborane ligands in I is comparable to that found in germanocene 
and its derivatives. This type of slippage from ?j5 to ?;3 has been 
observed in many of the stannocene,3"5 stannacarborane complex,8'9 

germanocene,14"17 silicocene,23 and other metallacarborane24 de­
rivatives. 

We believe that the compound I, along with [C2B9H1 J 2 S i ^ 2 5 

and [(Me3Si)2C2B4H4J2Si1V6 the only examples reported to date 
in which a group 4 atom is sandwiched by two carborane cages. 
In these compounds, the group 4 atom is 10-coordinated, indicating 
the use of d-orbitals by the germanium atom and the silicon atom 
in bonding to the carborane cages. It is clear that in I the ger­
manium atom interacts only weakly with the cage carbon atoms. 
However, the germanium in I is in its + 4 oxidation state. With 
the exception of this difference in oxidation state, the title com­
pound I can be regarded as a carborane analogue germanocene. 

Studies on the reactivities of [(Me3Si)(R)C2B4H4]2" ions with 
MX 4 (R = Me3Si, Me, H; M = Si, Sn, Pb; X = Cl, Br) are now 
in progress. The characterization and the chemistry of III will 
be reported later. 
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(21) FT NMR Data ofl: 1H NMR (CDCl3, relative to external Me4Si) 
6 4.07 [q br (overlapping), 6 H, basal H„ V(1H-11B) = 110 Hz], 0.62 [br q, 
2 H, apical Ht, V(1H-11B) = 171 Hz], 0.35 [br s, 36 H, (CH3)3Si];
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(CDCl3, relative to external BF3-OEt2) 5 17.87 [d, 4 B, basal BH, V(11B-1H) 
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(22) Crystal and experimental data for I. C16H44B8Si4Ge, mol wt 507.95, 
monoclinic, space group P2,/n, a = 9.905 (4) A, b = 11.649 (3) A, c = 13.793 
(3) A, 0 = 91.00 (3)°, U = 1591.2 (9) A3, Z = 2, daM = 1.060 g/cm3, M(MO 
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In developing a cycloaddition strategy to the synthesis of cy-
clopentanoids,12 we designed the silyl-substituted trimethylene­
methane precursor 1 as a dual-purpose conjunctive reagent. The 
notion was to create a silyl-substituted T M M - P d complex 2 as 
a reactive intermediate which could directly cycloadd to give 
silyl-substituted methylenecyclopentanes (path a) or could be 
intercepted by an electrophile that is more reactive than the normal 
T M M - P d acceptors (path b, i.e., 2 —• 3). The product, still 
bearing a silicon substituent, could regenerate a substituted 
T M M - P d complex 4 for subsequent cycloaddition (eq 1). We 
wish to report the achievement of this goal and an unusual di­
chotomy in the reactions of 1 as a function of leaving group. 
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The silyl-substituted T M M precursor 1 was prepared by 
metallation-silylation of 53 (A-C4H9Li, TMEDA, T H F , - 3 0 0 C , 
then T M S - C l , - 6 0 0 C , 9 1 % yield), chemoselective aqueous 
sulfuric acid hydrolysis of the O-silyl ether 6 (H2SO4 , H 2O, T H F , 
room temperature), and acylation (AcCl, C 5 H 5 N, CH2Cl2 , 0 0 C , 
77% yield for two steps to la 4 or nC4H9Li, THF, C H 3 O Q = O ) C l , 
- 6 0 C , 80% yield for two steps to lb4). Performing cycloadditions 

(1) For a recent review: Trost, B. M. Angew. Chem., Int. Ed. Engl. 1986, 
25, 1. 

(2) For some recent related work, see: (a) Shimizu, 1.; Ohashi, Y.; Tsuji, 
J. Tetrahedron Lett. 1984, 25, 5183. (b) Tetrahedron Lett. 1985, 26, 3825. 
(c) Binger, P.; Lu, Q.-H.; Wedemann, P. Angew. Chem., Int. Ed. Engl. 1985, 
24, 316. (d) Trost, B. M.; Bonk, P. J. Am. Chem. Soc. 1985, 107, 8277. 

(3) Trost, B. M.; Chan, D. M. T.; Nanninga, T. N. Org. Synth. 1984, 62, 
58. As in the original procedure, the hexane solution of n-butyllithium is 
concentrated to remove as much of the hexane as possible. It was subsequently 
found that the yield could be increased to 98% by leaving the hexane and not 
adding the THF. 

(4) This compound has been fully characterized spectrally and elemental 
composition determined by high-resolution mass spectroscopy and/or com­
bustion analysis. 
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